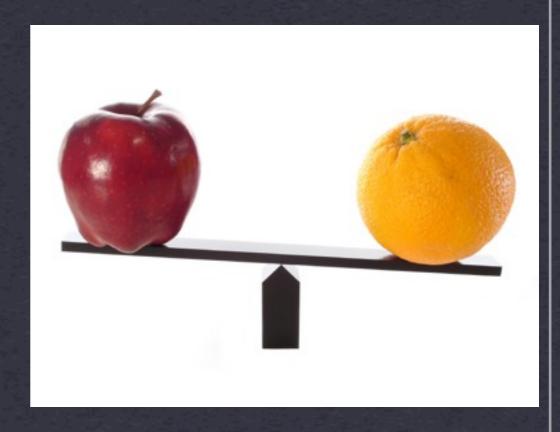


HOW TO RELATE **TWO VARIABLES**



PROJECT

CHAPTER 11 - REGRESSION

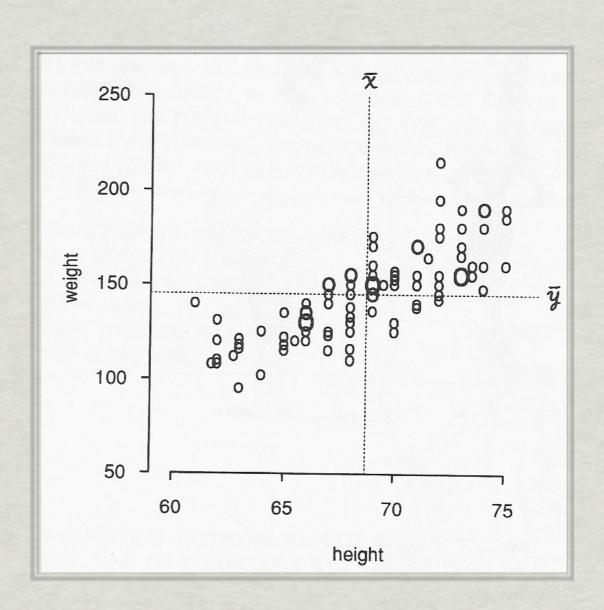
CARTOON GUIDE TO STATISTICS CHAPTER SUMMARY

DATE 2010 - 02 - 21

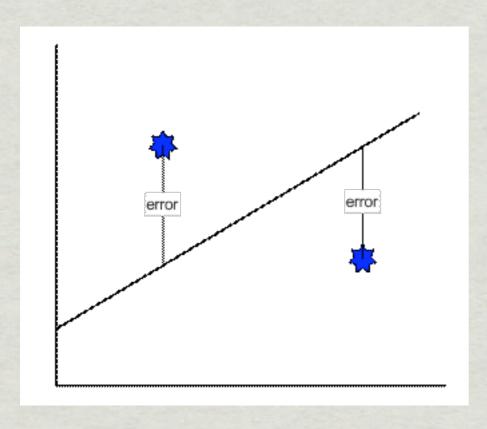
BY JIM CASEY CLASS GEOG 3000

We often use a graph to show how two variables relate

- * This is a scatterplot of two variables
- * Height and weight are two such variables
- * Does one influence the other?
- * What about other factors such as random variation?



The Regression Line, also called the Least Squares Line

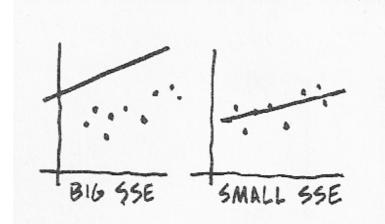


- * This line is positioned to minimize the distance between the line and all y values
- * The distance between any y value and the regression line is called 'error'
- * We calculate error values to measure how much the predicted values differ from actual values

The Sum of Squared Errors - SSE

* The regression line is the line with the smallest SSE value

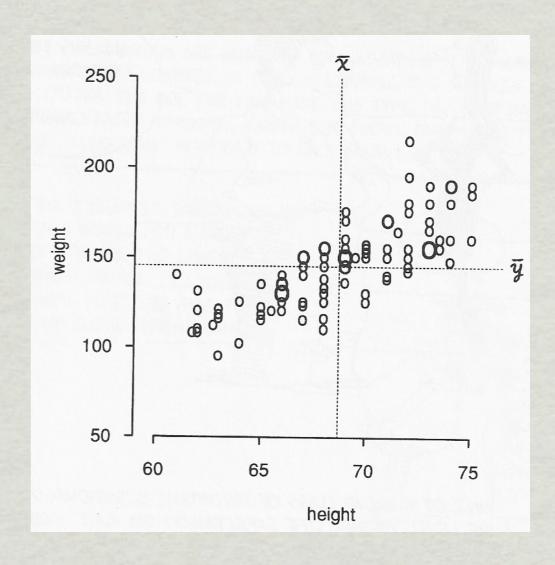
* SSE is found by calculating the sum of squared errors



$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Regression Analysis

- * Now, how do we find where the line goes, again?
- * We use a formula to find y from a, b and x
- * the x axis is the independent variable
- * the y axis is the dependent variable



The Regression Line Formula

* We can calculate y after finding the value of b and a

$$y = a+bx$$

$$b = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

AND

$$a = \bar{y} - b\bar{z}$$

(HERE \overline{z} and \overline{y} are the means of $\{z_i\}$ and $\{y_i\}$ respectively.)

- * The sum of squares for x and y measure the spread of x and y around the mean
- * The combined sum of squares is used to find the variable b as well
- * We abbreviate these as shown below

$$55_{\chi\chi} = \sum_{i=1}^{n} (\chi_{i} - \bar{\chi})^{2}$$

$$55_{\chi y} = \sum_{i=1}^{n} (\chi_{i} - \bar{\chi})(y_{i} - \bar{y})$$

$$55_{\chi y} = \sum_{i=1}^{n} (\chi_{i} - \bar{\chi})(y_{i} - \bar{y})^{2}$$

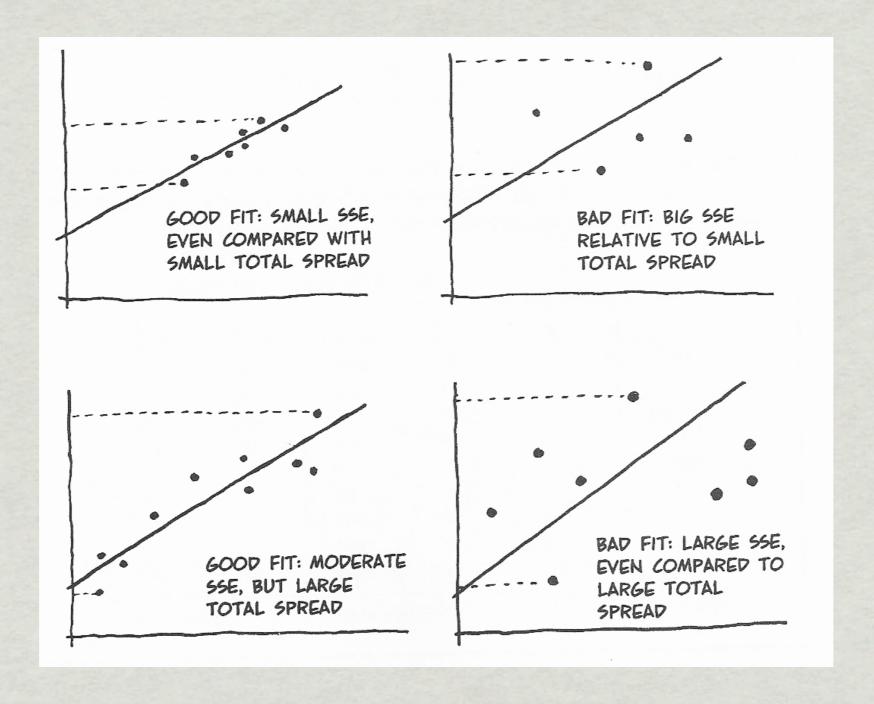
ANOVA - Analysis of Variance

Measuring Goodness of Fit

How well does the line fit the data?

- * Some regression lines fit very closely with their data representing less error
- * Some regression lines fit, but have lots of points far away from the line representing more error
- * More error looks like 'noise' on the scatterplot
- * The 'fat pencil test' shows a tight fit, because most of the data can be covered by laying a (fat) pencil over the line

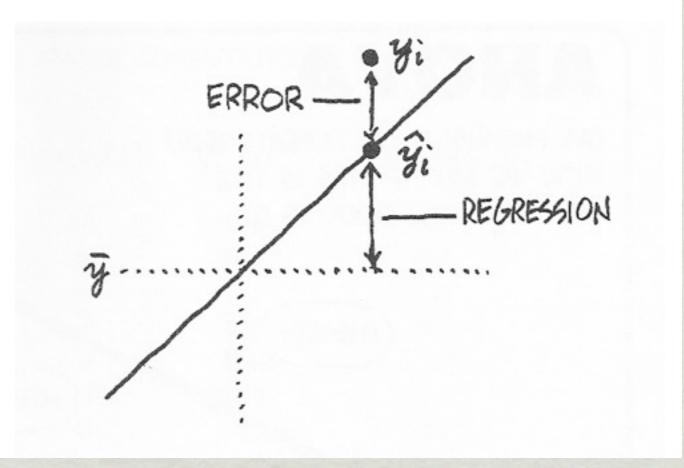
Good Fit vs Bad Fit



Measuring the Variability in y

* We use y^{hat} to represent predicted values as determined by the regression line

$$\hat{y}_i = a + b x_i$$



* Thus we can quantify the sources of variability with the sum of squares as shown below

***** SSR measures the predicted values of y

SOURCE OF VARIABILITY	SUM OF SQUARES
REGRESSION	$SSR = \sum_{i=1}^{n} (\widehat{y}_i - \overline{y})^2$
ERROR	$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$
TOTAL	$55_{yy} = \sum_{i=1}^{n} (y_i - \overline{y})^2$

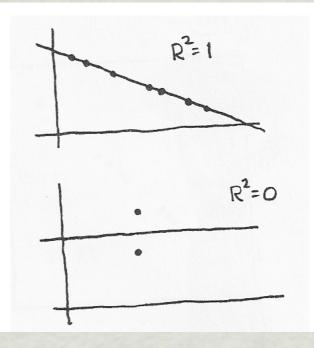
How do the predicted values and actual values relate?

- * For this, we need R²
- * R² is the correlation coefficient between the actual and predicted values
- * This helps us know how well the regression line approximates the actual data how they are associated
- * R² values can range from -1 to +1
- * R² is shown with it's own line on a graph

Interpreting R² Values

- * When R² = 1, there is a perfect relationship
- * When $R^2 = 0$, there is no relationship
- * We can know from this whether y will go up or down when x is increased

$$R^2 = \frac{55R}{55yy} = 1 - \frac{55E}{55yy}$$



Statistical Inference

What is this telling us?

A Regression *Model* for the Entire Population

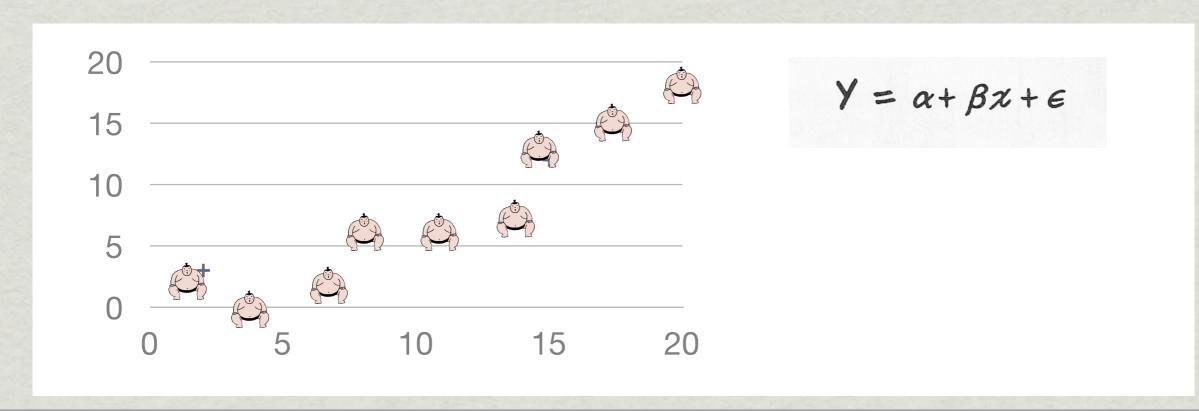
* To produce a linear regression of the entire population, this formula can be used

$$Y = \alpha + \beta x + \epsilon$$

Y IS THE DEPENDENT RANDOM VARIABLE; z is the independent variable (which may or may not be random); α and β are the unknown parameters we seek to estimate; and ϵ represents random error fluctuations.

Estimating α and β Using Samples

- * Using the formula, we can compare values reached by using the least squares method
- * Using different samples, we have a and b to compare with β and α



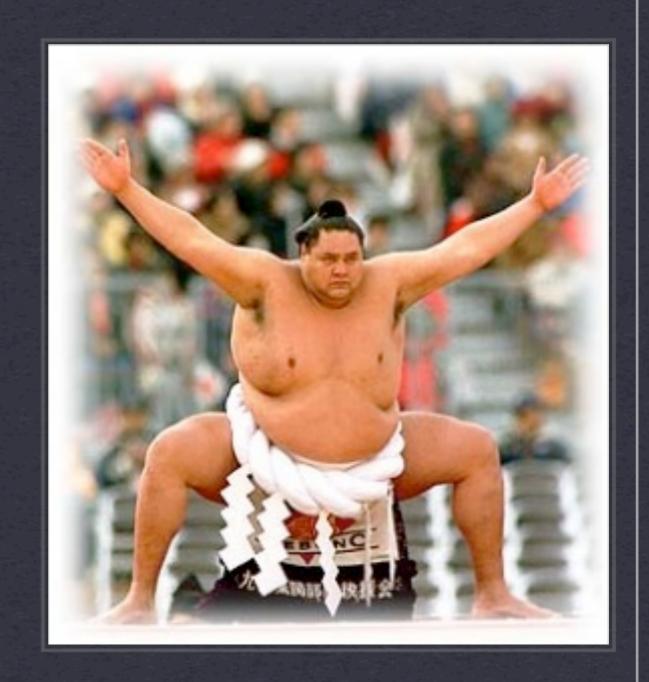
Calculating an Estimator

* From samples, we can calculate s

TO REPEAT, 5 IS AN ESTIMATOR OF HOW WIDELY THE DATA POINTS WILL BE SCATTERED AROUND THE LINE.

Confidence Intervals

Feeling about 95% confident in this one...



How Reliable are our Estimates?

* To measure a 95% confidence interval, use the following formula

$$\beta = b \pm t_{.025} SE(b)$$

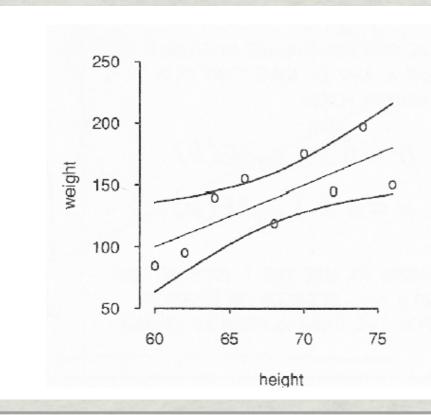
$$\alpha = a \pm t_{.025} SE(a)$$

HELPFUL LINK:

http://en.wikipedia.org/wiki/Confidence_interval

Predicting Mean Response

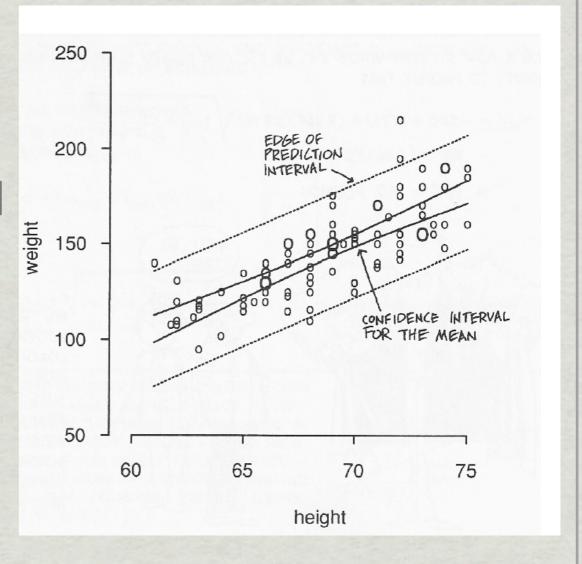
- * Mean response is an estimate of an expected value of y at a known value of x
- * The prediction interval is the distribution area between the curved lines



FOR
$$Y = \alpha + \beta x_0$$
 is
$$\alpha + \beta x_0 = \alpha + b x_0 \pm t_{.025} SE(\hat{y})$$
WHERE
$$SE(\hat{y}) = 5\sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{SS_{xx}}}$$

What makes a Good Predictor?

- * Many carefully chosen samples will provide more data points for analysis, and better predictions
- * Consider more variables than initially considered it may not be the factor that you anticipated



Hypothesis Testing

- * Are these two related?
- * The null hypothesis assumes there is no relationship or H_0 : $\beta=0$
- * This assumes that x does not affect y at all
- ** To test this, we use the t test statistic



- * We have choices for an alternate hypothesis
- * Using H_a : $\beta>0$ will reject the null hypothesis at $\alpha=.05$ significance level and conclude that there is a relationship

$$t = \frac{b}{SE(b)}$$

$$t > t_{\alpha} \text{ FOR } H_{\alpha} : \beta > 0$$

$$t < t_{\alpha} \text{ FOR } H_{\alpha} : \beta < 0$$

$$t < t_{\alpha} \text{ FOR } H_{\alpha} : \beta < 0$$

$$|t| > |t_{\alpha/2}| \text{ FOR } H_{\alpha} : \beta \neq 0$$

Multiple Linear Regression

- * Analyzes one dependent variable and multiple independent variables
- * This is similar to the other linear regression we have done, but uses matrix algebra best done on a computer!

$$Y = \alpha + \beta_1 x_1 + \beta_2 x_2 + ... \beta_n x_n + \epsilon$$

Nonlinear Regression

- * Not all regressions follow a line
- * For data that follows a nonlinear curve, linear regression can be used, such as with the following formula

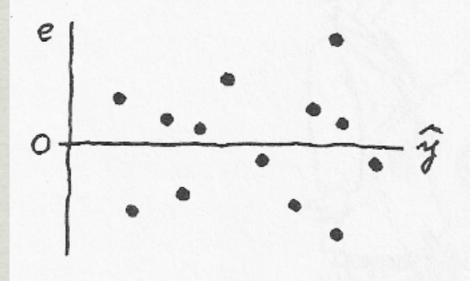
$$Y = \alpha + \beta_1 x + \beta_2 x^2 + \epsilon$$

AND TREAT z AND z^2 AS INDEPENDENT VARIABLES IN A LINEAR MODEL.

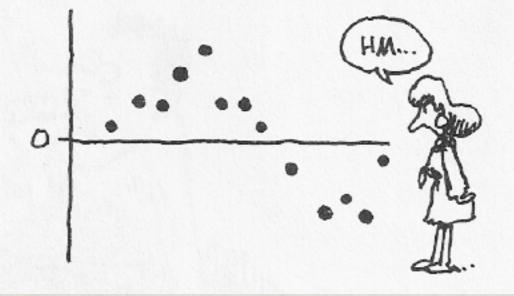
Regression Diagnostics

- * Plot the residual ei against the predictor yi
- * This will create a scatterplot that helps identify any patterns not yet detected

A RANDOM SCATTERPLOT INDICATES
THAT THE MODEL ASSUMPTIONS
ARE PROBABLY OK.



ANY PATTERN INDICATES A DEFINITE PROBLEM WITH THE MODEL ASSUMPTIONS.



That's All!

- * We have covered the basics of regression analysis
- * More resources are available at the following links

http://mathworld.wolfram.com/ http://en.wikipedia.org/wiki/Regression analysis